首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   98篇
  国内免费   10篇
化学   429篇
综合类   1篇
物理学   26篇
  2023年   4篇
  2022年   4篇
  2021年   11篇
  2020年   21篇
  2019年   17篇
  2018年   10篇
  2017年   9篇
  2016年   25篇
  2015年   41篇
  2014年   27篇
  2013年   32篇
  2012年   34篇
  2011年   36篇
  2010年   18篇
  2009年   36篇
  2008年   24篇
  2007年   21篇
  2006年   15篇
  2005年   17篇
  2004年   18篇
  2003年   10篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1992年   2篇
  1982年   1篇
  1977年   1篇
排序方式: 共有456条查询结果,搜索用时 174 毫秒
101.
102.
Chromophores are the center piece of second order nonlinear optical (NLO) materials. The common chromophore consists of a Donor-Bridge-Acceptor structure. Donors and acceptors are connected by a bridge and together they make a fully conjugated system. Based on our previously synthesized novel acceptors [1], we have synthesized a large number of high electro-optic chromophores. In this paper, we report four general types of chromophore that were synthesized during the last few years in our l…  相似文献   
103.
104.
105.
The synthesis, hydrogelation, and aggregation‐induced emission switching of the phenylenedivinylene bis‐N‐octyl pyridinium salt is described. Hydrogelation occurs as a consequence of π‐stacking, van der Waals, and electrostatic interactions that lead to a high gel melting temperature and significant mechanical properties at a very low weight percentage of the gelator. A morphology transition from fiber‐to‐coil‐to‐tube was observed depending on the concentration of the gelator. Variation in the added salt type, salt concentrations, or temperature profoundly influenced the order of aggregation of the gelator molecules in aqueous solution. Formation of a novel chromophore assembly in this way leads to an aggregation‐induced switch of the emission colors. The emission color switches from sky blue to white to orange depending upon the extent of aggregation through mere addition of external inorganic salts. Remarkably, the salt effect on the assembly of such cationic phenylenedivinylenes in water follow the behavior predicted from the well‐known Hofmeister effects. Mechanistic insights for these aggregation processes were obtained through the counterion exchange studies. The aggregation‐induced emission switching that leads to a room‐temperature white‐light emission from a single chromophore in a single solvent (water) is highly promising for optoelectronic applications.  相似文献   
106.
A variety of asymmetrically donor–acceptor‐substituted [3]cumulenes (buta‐1,2,3‐trienes) were synthesized by developed procedures. The activation barriers to rotation ΔG were measured by variable temperature NMR spectroscopy and found to be as low as 11.8 kcal mol?1, in the range of the barriers for rotation around sterically hindered single bonds. The central C?C bond of the push–pull‐substituted [3]cumulene moiety is shortened down to 1.22 Å as measured by X‐ray crystallography, leading to a substantial bond length alternation (BLA) of up to 0.17 Å. All the experimental results are supported by DFT calculations. Zwitterionic transition states (TS) of bond rotation confirm the postulated proacetylenic character of donor–acceptor [3]cumulenes. Additional support for the proacetylenic character of these chromophores is provided by their reaction with tetracyanoethene (TCNE) in a cycloaddition‐retroelectrocyclization (CA–RE) cascade characteristic of donor‐polarized acetylenes.  相似文献   
107.
This article assembles pertinent insights behind the concept of planarizable push–pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground‐state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single‐ and double‐stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on λ‐ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push–pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push–pull probes, this challenge is met not with twistome screening, but with “fluorescent flippers,” a new concept to insert large and bright monomers into oligomeric probes to really feel the environment and also shine when twisted out of conjugation.  相似文献   
108.
109.
Coupling of uronium salts with in situ generated N‐heterocyclic carbenes provides straightforward access to symmetrical [ 4 ]2+ and unsymmetrical bis‐imidazolium salts [ 6 ]2+ and [ 9 ]2+. As indicated by cyclic and square‐wave voltammetry, [ 6 ]2+ and [ 9 ]2+ can be (irreversibly) reduced by one electron. The initially formed radicals [ 6 ].+ and [ 9 ].+ undergo further reactions, which were probed by EPR spectroscopy and density functional calculations. The final products of the two‐electron reduction are the two carbenes. Upon irradiation with UV light both [ 6 ]2+ and [ 9 ]2+ emit at room temperature in solution but with dramatically different characteristics. The different fluorescence behavior is analyzed by emission spectroscopy and interpreted by using time‐dependent density functional calculations as largely due to different excited‐state dynamics of [ 6 ]2+ and [ 9 ]2+. The geometries of both radicals [ 6 ].+ and [ 9 ].+ and excited states {[ 6 ]2+} * and {[ 9 ]2+}* are substantially different from those of the parent ground‐state molecules.  相似文献   
110.
The chirality found in living organisms is one of unsolved mysteries on Earth. It is crucial to understand the manner in which small achiral molecules evolve into helical superstructures in the absence of chiral components because this process can provide important insights regarding the origin of chirality in nature. 1) the uncommon helical assembly of an achiral trigonal chromophore into helical nanostructures with aggregation‐induced emission enhancement (AIEE) characteristics and 2) the tunability of the helical pitch and fluorescence intensity in response to light is reported. The Rietveld refinement of X‐ray diffraction (XRD) patterns and the growth process suggest that a striking transformation from an achiral to an asymmetric molecule can occur as a result of specific interactions with certain solvents, presumably leading to the unique helical assembly. More importantly, exposure to UV or visible light promoted not only the formation of irregular helical structures with a wide range of pitch lengths but also an increase in fluorescence intensity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号